Tech Note 360: Acoustic Insulation and Sound Transmission in Cold-Formed Steel Construction
Tech Note 360: Acoustic Insulation and Sound Transmission in Cold-Formed Steel Construction

Summary: Cold-formed steel has been widely used in commercial buildings, especially in non-load bearing (partitions) and curtain wall applications, and is increasingly used as primary structural members, such as beams and columns, or as load-bearing walls or partitions in commercial and residential construction. The acoustic performance of floors and walls is an important consideration for many buildings.

Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

 

$5.00 Add to cart
Tech Note 559: Design Considerations for Flexural and Lateral-Torsional Bracing
Tech Note 559: Design Considerations for Flexural and Lateral-Torsional Bracing

Summary: Load bearing cold-formed/light gauge steel (CFS/LGS) framed walls are typically designed for a combination of axial and lateral out-of-plane (flexural) loading. Under this loading condition, common C-section studs may be susceptible to local, torsional, flexural, torsional-flexural, lateral-torsional or distortional buckling. The response performance of the stud depends on a number of parameters most notably how it is supported along its length (including its ends), the relative magnitudes of the applied loads and the distribution of these loads. This Technical Note discusses the behavior of the typical wall stud and provides some practical considerations for design of torsional-flexural and lateral-torsional bracing. Recommendations and considerations suggested in this technical note are done in accordance with acceptable practices and existing design documents.

Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

 

$5.00 Add to cart
Tech Note G000-08: Cold-Formed Steel Design Software
Tech Note G000-08: Cold-Formed Steel Design Software

Summary: This Tech Note gives basic information about computer programs available for the design of cold-formed steel framed buildings, structures, and structural elements. It is not necessarily a comprehensive list, but is based on the best available information to the CFSEI at the time of publication. It is not intended to endorse or exclude any particular software program.

Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

 

$5.00 Add to cart
Tech Note G100-23: Using Chapter F of the North American Specification for the Design of CFS Structural Members
Tech Note G100-23: Using Chapter F of the North American Specification for the Design of CFS Structural Members

This Tech Note Updates and Replaces Tech Note G100-07

Summary: The North American Specification for the Design of Cold-Formed Steel Structural Members is intended for use throughout the U.S., Canada and Mexico and was developed by the American Iron and Steel Institute, Canadian Standards Association, and CANACERO in Mexico. The Specification provides procedures for the design of load bearing cold-formed steel members in buildings and certain other applications.

Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

 

$5.00 Add to cart
Tech Note G101-08: Design Aids and Examples for Distortional Buckling
Tech Note G101-08: Design Aids and Examples for Distortional Buckling

Summary: The objective of this Tech Note is to provide design examples and design aids specific to cold-formed steel framing systems that address the new distortional buckling limit states added to AISI-S100 in the 2007 edition. In addition, a method is provided for including rotational restraint, provided by sheathing to members, in the design calculations for distortional buckling. This method has been proposed for the next edition of AISI-S210 (floors and roofs) and AISI-S211 (walls studs) standards and partially mitigates the reduced capacity in the distortional buckling limit state.

Note: This document was originally published as G100-08, corrected to G101-08 in April 2011.

Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

 

$5.00 Add to cart
Tech Note G102-09: Designing Cold-Formed Steel using the Direct Strength Method
Tech Note G102-09: Designing Cold-Formed Steel using the Direct Strength Method

Summary: The Direct Strength Method is an entirely new design method for cold-formed steel. The Direct Strength Method requires no effective width calculations, eliminates tedious iterations to determine section properties, properly includes interaction effects between elements of the cross-section such as the flange and the web, and opens up the potential to create new sections as it is applicable to nearly any shape that can be formed from cold-formed steel, as opposed to just C, Z and hat shapes. The Direct Strength Method was first adopted in 2004 as Appendix 1 to the North American Specification for the Design of Cold-Formed Steel Structural Members, and the most recent version can be found in the recently published AISI-S100-07. This CFSEI Technical Note introduces the Direct Strength Method and details some of the features of a recently published AISI Design Guide for this Method. The intent of this Tech Note and the Guide is to provide engineers with practical guidance in the application of this new design method.

Note: This document was originally published as G100-09, Corrected to G102-09 in April 2011

Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

 

$5.00 Add to cart
Tech Note G103-11a: Tabulated Local And Distortional Elastic Buckling Solutions For Standard Shapes
Tech Note G103-11a: Tabulated Local And Distortional Elastic Buckling Solutions For Standard Shapes

Summary: This note provides elastic buckling moments and forces for local and distortional buckling of typical standard sections such as those in the AISI S201 Standard for Cold-Formed Steel Framing—Product Data and the Steel Stud Manufacturers Association  (SSMA) Product Technical Information Catalog. These tabulated values allow designers to quickly examine and evaluate the use of the direct strength method (DSM) for design. Note that basic information on DSM is discussed in CFSEI Technical Note G102.

Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

 

$5.00 Add to cart
Tech Note G104-23: Welded Box-Beam Flexure Design
Tech Note G104-23: Welded Box-Beam Flexure Design

This Tech Note Updates and Replaces Tech Note G104-14

Summary: A box-beam configuration may be used at openings in a floor or wall framing assembly. AISI S100, North American Specification for the Design of Cold-Formed Steel Structural Members only contains design provisions for a built-up flexural members consisting of two C-sections back-to-back used as a flexural member. For built-up members to act as one unit (composite), the members must be connected together with sufficient fasteners and spacing. This Tech Note illustrates the extrapolation of AISI S100 Section I1.1 provisions to a box-beam configuration.

Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

 

$5.00 Add to cart
Tech Note G105-22: Compression Member Reinforcement
Tech Note G105-22: Compression Member Reinforcement

Summary: To modify the capacity of a compression member, e.g. wall stud or truss web, adding a reinforcement may result in a non-prismatic member. This Tech Note provides guidance to evaluate the strength of a non-prismatic compression member.

Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

 

$5.00 Add to cart
Tech Note G200-21: Chase the Loads: Load Path Considerations for Cold-Formed Steel Light-Frame Construction
Tech Note G200-21: Chase the Loads: Load Path Considerations for Cold-Formed Steel Light-Frame Construction

This Technical Note updates and replaces CFSEI Technical Note G200-15

Summary: Engineering students are admonished to “chase the loads” in their structural analysis and design courses. A “load path” is the direction in which each consecutive load will pass through framing members and the connected members of a framing assembly. The load path sequence begins at the point of load application, both vertical (gravity, wind uplift or seismic vertical) and lateral, on the structure and works all the way down to the footing or foundation system, ultimately transferring the load of the structure to the foundation. This Tech Note provides insight into the load path considerations for cold-formed steel framing.

Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

 

$5.00 Add to cart
Tech Note G500-23: Guidelines for Inspecting Cold-Formed Steel Structural Framing
Tech Note G500-23: Guidelines for Inspecting Cold-Formed Steel Structural Framing

This Tech Note Updates and Replaces Tech Note G500-11

Summary: The purpose of this Tech Note is to provide guidance for inspecting cold-formed steel structural framing in buildings.

Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

 

$5.00 Add to cart
Tech Note G800-23: ASTM Standards for Cold-Formed Steel
Tech Note G800-23: ASTM Standards for Cold-Formed Steel

This Tech Note Updates and Replaces Tech Note G800-12

Summary: This Technical Note provides an overview of the principal ASTM standards affecting cold-formed steel framing. These standards are often referenced in building codes and contractual documents, and are available for purchase on the ASTM website.

Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

 

$5.00 Add to cart