Back-to-Basics: Structural vs Nonstructural Members Webinar
$100.00
Continuing Education Credits Available – 1.5 PDH Credits
The North American Standard for Cold-Formed Steel Framing – Nonstructural Members, AISI S220, has been adopted into IBC 2015. AISI S220 was created to help delineate and eliminate the confusion between the engineering principles and requirements for cold-formed steel structural members and nonstructural members. The webinar will address the basic behavior of composite vs non-composite wall assemblies, as well as design requirements that differ between the structural and nonstructural member.
Presenter: Roger LaBoube, Ph.D., P.E.
Wei-Wen Yu Center for Cold-Formed Steel Structures
Roger LaBoube, Ph.D., P.E. is Curator’s Distinguished Teaching Professor Emeritus of Civil, Architectural and Environmental Engineering and Director of the Wei-Wen Yu Center for Cold-Formed Steel Structures at the Missouri University of Science & Technology (formerly University of Missouri-Rolla). Dr. LaBoube holds B.S., M.S., and Ph.D. degrees in Civil Engineering from the University of Missouri-Rolla. Dr. LaBoube has an extensive background in the design and behavior of cold-formed steel structures. His research and design activities have touched on many facets of cold-formed steel construction including cold-formed steel beams, panels, trusses, headers, and wall studs as well as bolt, weld, and screw connections. He is active in several professional organizations and societies, including membership on the American Iron and Steel Institute’s Committee on Specifications for the Design of Cold-Formed Steel Structural Members and chairman of the AISI Committee on Framing Standards. He is a registered Professional Engineer in Missouri.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically
Related Products

Webinar on Design Considerations for Cold-Formed Steel Light Frame Diaphragms
Continuing Education Credits Available – 1.5 PDH Credits
This webinar will cover the basic design of cold-formed steel light frame diaphragms as envisioned in the provisions articulated in AISI S100-16, North American Specification for the Design of Cold-Formed Steel Structural Members, 2016 Edition; AISI S230-19, North American Standard for Cold-Formed Steel Framing―Prescriptive Method for One- and Two-Family Dwellings, 2019 Edition; AISI S400-15 w/S1-16, North American Standard for Seismic Design of Cold-Formed Steel Structural Systems, 2015 Edition with Supplement 1; and AISI S240-15, North American Standard for Cold-Formed Steel Structural Framing, 2015 Edition. Design practice documents derived from these AISI Standards will also be addressed. At the conclusion of this webinar, design professionals will have a better understanding of current provisions that support engineered design (strength and deflection) of conventional codebased light frame cold-formed steel diaphragms as well as the limitations of these provisions.

Presenter: Reynald Serrette, Ph.D.,
Santa Clara University
Reynaud Serrette, Ph.D. is a professor in the Department of Civil, Environmental and Sustainable Engineering at Santa Clara University in Santa Clara, California. He has been involved in cold-formed steel research and design since 1987.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically

Webinar on Innovative Options with Cold-Formed Steel Floor Systems
Continuing Education Credits Available – 1.5 PDH Credits
Cold-formed steel (CFS) framed floor systems used to be simple and straightforward: joists at 16” or 24” on center aligned over wall studs with the joists braced with blocking/strapping every few feet, all topped with plywood or pan deck and concrete. But now the rules have changed. With the advent of ledger framing and load distribution members and composite CFS floor systems, we are seeing true innovation in floor framing, as well as how floors are built/supported/topped. With new products being developed at a rapid pace, engineers have to keep up with the latest to select economical and lightweight systems that can now compete with the efficiencies of open-web bar joist and composite deck systems. This session will provide an overview of several CFS floor framing systems and methodologies that are starting to win back floor framing from other materials, and other potential efficiencies that can be gained from the inherent versatility and constructability of CFS floor framing.
After attending this presentation, participants will be able to:
- Design and detail joist and truss support systems that obviate alignment framing and provide more flexibility for field fixes and bearing wall openings.
- Evaluate a wide variety floor topping materials that provide joist bracing, diaphragm strength, and gravity load support.
- Consider options with wider spaced joists or trusses: using the span capabilities of steel deck or steel-and-concrete systems.
- Consider composite design with CFS and concrete systems: both deck and joists and combinations of these.
- Know where to go for additional resources on floor issues.
Presenter: Don Allen, P.E., Super Stud Building Products, Inc.
Don Allen, P.E. currently serves as Director of Engineering for Super Stud Building Products, Inc., where he oversees product development, testing, engineering, and technical services. Having worked in the cold-formed steel industry since 1990, Don served as a CFS specialty engineer, Engineer-of-Record, and industry representative before his current position with a stud manufacturer. He concurrently served for more than nine years as Technical Director for three associations in the cold-formed steel industry ─ the Steel Stud Manufacturers Association (SSMA), the Steel Framing Alliance (SFA), and the Cold-Formed Steel Engineers Institute (CFSEI). He chairs the Education Subcommittee of the American Iron and Steel Institute’s Committee on Framing Standards and Committee on Specifications, and was the recipient of the 2013 CFSEI Distinguished Service Award. He has given presentations on CFS in China, Colombia, Egypt, Hawaii, and South Africa, and has been involved in design projects in North America, Africa, and Europe.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically

Webinar on Post-Installed Anchor Testing, Qualification, and Design Procedure
Continuing Education Credits Available – 1.5 PDH Credits
Structural and non-structural elements are often connected to concrete structures by means of concrete anchors. Anchors are either cast-in the concrete during construction, or post-installed when the concrete has cured. There are various concrete anchor types with different behavioral characteristics. The designer must select the type, size and embedment most suitable for the given situation. Due to the large diversity in product types and makes, anchors are not standardized and products need to be qualified for their intended use. For this, suitability and serviceability tests on individual anchors are carried out in independent test laboratories. Evaluation of the test results ultimately result in the issuing of technical approvals which also provide the necessary data to carry out safe anchor design. In this webinar, the process for testing and qualification of post installed anchors, relevant building code and acceptance criteria will be discussed along with the design procedure, failure modes, and the factors affecting the failure mode.
Presenter: Natasha Zamani, Ph.D., P.E.
Natasha Zamani received her Ph.D. in Civil Engineering from Southern Methodist University with a focus on numerical analysis of seismic soil-foundation-structure interaction. She is a registered professional engineer in Texas. Currently, she is working at Hilti as the Code and Standards Senior Manager. She is responsible for implementing and driving the code and approval strategy for Hilti installation product line or related modular cold formed systems.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically

Webinar on Cold-Formed Steel Classroom: Impact of the 2018 IBC
Continuing Education Credits Available – 1.5 PDH Credits
The American Iron and Steel Institute’s Committee on Framing Standards has developed 2015 editions of the suite of cold-formed steel framing design standards (S220-15, S240-15, S400-15) and the Committee on Specifications has developed S310-15 for diaphragm design, as well as a 2016 edition of the North American Specification (S100-16). This presentation will discuss the scope and some of the changes to these design standards. Specific reference will be provided to clarify adoption of the standards in the 2018 International Building Code.
The presentation will highlight available design aids provided by AISI such as AISI D110-16, Cold-Formed Steel Framing Design Guide, which has been updated to reflect the design requirements of AISI S100-2012 and AISI S240-2015. Another excellent source for design examples is the Cold-Formed Steel Engineers Institute Tech Notes which will also be addressed by the presentation. Also, an overview of the soon to be published AISI D113 Cold-Formed Shear Wall Design Guide will be provided.
Presenter: Roger LaBoube, Ph.D., P.E.
Wei-Wen Yu Center for Cold-Formed Steel Structures
Roger LaBoube, Ph.D., P.E. is Curator’s Distinguished Teaching Professor Emeritus of Civil, Architectural and Environmental Engineering and Director of the Wei-Wen Yu Center for Cold-Formed Steel Structures at the Missouri University of Science & Technology (formerly University of Missouri-Rolla). Dr. LaBoube holds B.S., M.S., and Ph.D. degrees in Civil Engineering from the University of Missouri-Rolla. Dr. LaBoube has an extensive background in the design and behavior of cold-formed steel structures. His research and design activities have touched on many facets of cold-formed steel construction including cold-formed steel beams, panels, trusses, headers, and wall studs as well as bolt, weld, and screw connections. He is active in several professional organizations and societies, including membership on the American Iron and Steel Institute’s Committee on Specifications for the Design of Cold-Formed Steel Structural Members and chairman of the AISI Committee on Framing Standards. He is a registered Professional Engineer in Missouri.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically

Webinar on the Wonderful World of Buckling
Continuing Education Credits Available – 1.5 PDH Credits
A thin compression element of a cold-formed steel member – such as a flange or a web — may buckle before it reaches its yield stress. Thus, cold-formed steel design involves estimating the influence such buckling has on the strength of a beam or column.
What are these buckling conditions? How do they differ in their behavior? This webinar will explore the basic buckling behaviors encountered as one designs a cold-formed steel beam or column. Emphasis will be placed on the fundamental behavior and highlight the design expressions that enable an engineer to estimate buckling strength.
Join Roger LaBoube, Ph.D., P.E., on this journey through the wonderful world of buckling.
Presenter: Roger LaBoube, Ph.D., P.E., Cold-Formed Steel Engineers Institute
Dr. Roger A. LaBoube is Curator’s Distinguished Teaching Professor Emeritus of Civil, Architectural and Environmental Engineering and former director of the Wei-Wen Yu Center for Cold-Formed Steel Structures at the Missouri University of Science & Technology. Dr. LaBoube holds B.S., M.S., and Ph.D. degrees in Civil Engineering from the University of Missouri-Rolla. He has an extensive background in the design and behavior of cold-formed steel structures. His research and design activities have touched on many facets of cold-formed steel construction, including cold-formed steel beams, panels, trusses, headers, and wall studs as well as bolt, weld, and screw connections. Dr. LaBoube is active in several professional organizations and societies. He serves as chairman of the American Iron and Steel Institute (AISI) Committee on Framing Standards and is an emeritus member of the AISI Committee on Specifications for the Design of Cold-Formed Steel Structural Members. He is a registered professional engineer in Missouri.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically
Price: $100

Webinar on Demystifying Cold-Formed Steel Torsion Analysis for Design
Continuing Education Credits Available – 1.5 PDH Credits
Cold-formed steel structural members are commonly subjected to torsion. The torsional behavior of open cross-sections can be complex, involving both warping torsion and St. Venant torsion. Most structural engineering curriculums do not teach this combined torsion response, leaving many engineers with limited ability to properly design for torsion. To complicate matters, most structural analysis software does not fully capture the torsional behavior for cold-formed steel members.
This webinar will review some torsion fundamentals and explain torsion distribution using analogies to flexural behavior familiar to structural engineers. The similarity to flexure will be demonstrated using the CFS® software. The AISI design provisions for combined bending and torsion will be reviewed, and the application of these provisions will be evaluated with several design examples.
Presenter: Bob Glauz, P.E., MSCE

Bob Glauz is the author of the CFS® software used internationally for cold-formed steel design. He is a member of the American Iron and Steel Institute (AISI) Committee on Specifications and chairs the AISI Committee on Member Design. He is also a member of the ASCE/SEI Standards Committee on Stainless Steel Cold-Formed Sections, the Structural Stability Research Council (SSRC) and the SSRC Task Group on Stability of Steel Members. Bob has authored several technical articles on lateral-torsional, flexural-torsional, and distortional buckling of cold-formed steel members.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically

Webinar on Current Topics in Cold-Formed Steel Framing
Continuing Education Credits Available – 1.5 PDH Credits
While there are a variety of popular topics in cold-formed steel (CFS) engineering, in this CFSEI webinar Zane Clark, P.E., S.E., and Josh Garton, P.E., S.E., of McClure will focus on two important areas.
First, Clark and Garton will discuss powder actuated fasteners in seismic applications. Since CFS connection systems need to resist seismic forces in seismic zones, the presenters will discuss current challenges and limitations of using PAFs and alternative options.
Second, Clark and Garton will discuss the use of non-bearing walls as shear walls. While other framing materials can be used to construct shear walls, non-bearing CFS-framed assemblies provide some shear strength to resist lateral loads. The presenters will discuss the limitations and special detailing requirements of such CFS systems.
The presenters will also allow time to discuss other CFS considerations currently popular within the engineer community.

Zane Clark, P.E., S.E., McClure
Zane Clark, P.E., S.E., is the Structural Technical Lead for McClure, where he has been designing cold-formed steel (CFS) structures since 2015. Through his time at McClure, Clark has gained specialized expertise in the design of mid-rise, load-bearing CFS buildings. Clark’s current role involves providing quality control and code compliance reviews of design documents produced by McClure’s structural team as well as promoting technical education and training for the engineering staff. He is active with the ASCE/SEI Committee on Cold-Formed Steel Members, which is producing a design guide for CFS structures. His contribution is on the design of CFS lateral force-resisting systems.

Josh Garton, P.E., S.E., McClure
Josh Garton, P.E., S.E., is Project Manager and Team Leader for McClure’s Enclosures and Interiors structural services team. McClure has 14 offices in 5 states, practicing in 49 states. Garton has over 9 years of experience designing cold-formed steel systems throughout the country. He has a background specifically in non-bearing exterior framing, interior framing and ceiling systems, complex curved structural cold-formed steel, panelized and modular construction, high seismic applications, and cladding design.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically
Price: $100

Webinar on Cold-Formed Steel Floor System
Continuing Education Credits Available – 1.5 PDH Credits
This webinar will focus on the ideation, development, analysis and experimental evaluation of an innovative lightweight modular floor system utilizing cold-formed steel. As part of a research project funded by the American Institute of Steel Construction (AISC), researchers at the University of Kansas developed a novel floor system composed primarily of cold-formed steel, intended for modular use in steel-framed buildings. The webinar will highlight the background and initial development of the floor system, including design and construction considerations and corresponding analyses. As rapid fabrication, vibration mitigation and diaphragm behavior were emphasized in the development of the floor system, experimental testing of the floor focused on the cyclic behavior of connectors in the cold-formed steel components, vibration serviceability of the floor, and cyclic diaphragm performance within a steel-framed structure. All aspects of system validation will be presented, including physical and analytical evaluations as well as recommendations for future implementation and other project.
Matthew F. Fadden, Ph.D., P.E., Wiss, Janney, Elstner Associates
Dr. Fadden joined WJE with 10 years of experience in structural engineering research and consulting. His primary areas of expertise include the design, analysis and evaluation of steel structures (hot-rolled and cold-formed) and reinforced concrete structures. Additionally, Dr. Fadden has expertise in structural evaluation using finite element modeling and structural testing. His experience also includes seismic design, structural vibrations, offshore structures and litigation support.
Prior to joining WJE, Dr. Fadden was a professor in the Department of Civil, Environmental, and Architectural Engineering at the University of Kansas. There, his research areas included modular systems and connections for steel buildings, bolted and welded connections, ancillary sign structures, structural vibrations, and additive manufacturing for civil infrastructure. Dr. Fadden has authored many technical publications in referenced journals and provided numerous conference presentations.
Dr. Fadden is a member of the American Institute of Steel Construction (AISC), the American Society of Civil Engineers (ASCE), and the Cold-Formed Steel Engineers Institute (CFSEI). He is a registered Professional Engineer in Alabama, Florida, Kansas and Louisiana He earned a B.S. degree in Civil Engineering from the University of Illinois at Urbana-Champaign and M.S. and Ph.D. degrees in Civil Engineering from the University of Michigan.
William N. Collins, Ph.D., P.E., University of Kansas
Dr. Collins is the Chair’s Council Associate Professor of Civil, Environmental and Architectural Engineering at the University of Kansas.
Dr. Collins’ expertise is in structural engineering, with a particular focus on fracture and fatigue behavior and metallic infrastructure. He has been associated with numerous projects related to structural behavior, fabrication and inspection. He is active with numerous professional organizations, including TRB, ASTM International and the AASHTO/NSBA Collaboration. Dr. Collins is also engaged in a variety of educational initiatives at the University of Kansas, including the development and implementation of peer mentoring in structural engineering curricula, an effort that has spread to other groups and departments within the university. He was awarded the AISC Milek Fellowship in 2021.
Previously, he was a research engineer at Purdue University and a research/teaching assistant at Virginia Polytechnic Institute and State University (Virginia Tech). He was also a timberwright at Blue Ridge Timberwrights in Christiansburg, Virginia and a construction superintendent at Prospect Homes of Richmond.
Dr. Collins is a registered Professional Engineer in Kansas. He holds B.S., M.S., and Ph.D. degrees in Civil Engineering, Structural Engineering and Materials from Virginia Tech.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically