Tech Note F501-11: Cold-Formed Steel Truss To Bearing Connections
$5.00
Summary: This Technical Note is intended as general educational information and to highlight what the building designer should be aware of with regard to truss to bearing connections. Topics addressed include what loads due to wind truss to bearing connections may have to resist, who is ultimately responsible for truss to bearing connection design, general guidance on the design of truss to bearing connections, and an illustrative design example. Loads due to seismic forces are not addressed in this Technical Note.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Related Products
Tech Note S200-20: Design of Cold-Formed Steel Systems for Raised Platforms, Stages and Theater Seating
Summary: It is common for cold-formed steel (CFS) to be used in the construction of raised platforms, stages, and theater seating. It is the intent of the Technical Note to provide an overview of considerations to address when designing such framing, along with some design examples.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note B005-20: Introduction to Cold-Formed Steel Framing Design Aids
Summary: Both steel industry and manufacturers’ associations provide design aids that assist engineers with the proper application of the cold-formed steel design challenges. Design examples and design aids are essential to educate an engineer in the proper use and design of cold-formed steel members, connections and assemblies. This Tech Note provides an overview of some of the available cold-formed steel framing design aids.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note G103-11a: Tabulated Local And Distortional Elastic Buckling Solutions For Standard Shapes
Summary: This note provides elastic buckling moments and forces for local and distortional buckling of typical standard sections such as those in the AISI S201 Standard for Cold-Formed Steel Framing—Product Data and the Steel Stud Manufacturers Association (SSMA) Product Technical Information Catalog. These tabulated values allow designers to quickly examine and evaluate the use of the direct strength method (DSM) for design. Note that basic information on DSM is discussed in CFSEI Technical Note G102.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note 559: Design Considerations for Flexural and Lateral-Torsional Bracing
Summary: Load bearing cold-formed/light gauge steel (CFS/LGS) framed walls are typically designed for a combination of axial and lateral out-of-plane (flexural) loading. Under this loading condition, common C-section studs may be susceptible to local, torsional, flexural, torsional-flexural, lateral-torsional or distortional buckling. The response performance of the stud depends on a number of parameters most notably how it is supported along its length (including its ends), the relative magnitudes of the applied loads and the distribution of these loads. This Technical Note discusses the behavior of the typical wall stud and provides some practical considerations for design of torsional-flexural and lateral-torsional bracing. Recommendations and considerations suggested in this technical note are done in accordance with acceptable practices and existing design documents.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note FC101-22: Design of Cold-Formed Steel Rim Track
Summary: Cold-formed steel floor, roof, soffit, and ceiling joists are widely used in commercial applications. End of the joist rim track is an important component of many floor/roof/ceiling/soffit systems used to transfer load from the joist to another component of the structure. This Technical Note provides an overview of different rim track applications and how each is designed.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note G102-09: Designing Cold-Formed Steel using the Direct Strength Method
Summary: The Direct Strength Method is an entirely new design method for cold-formed steel. The Direct Strength Method requires no effective width calculations, eliminates tedious iterations to determine section properties, properly includes interaction effects between elements of the cross-section such as the flange and the web, and opens up the potential to create new sections as it is applicable to nearly any shape that can be formed from cold-formed steel, as opposed to just C, Z and hat shapes. The Direct Strength Method was first adopted in 2004 as Appendix 1 to the North American Specification for the Design of Cold-Formed Steel Structural Members, and the most recent version can be found in the recently published AISI-S100-07. This CFSEI Technical Note introduces the Direct Strength Method and details some of the features of a recently published AISI Design Guide for this Method. The intent of this Tech Note and the Guide is to provide engineers with practical guidance in the application of this new design method.
Note: This document was originally published as G100-09, Corrected to G102-09 in April 2011
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note G801-13: ASTM A1003 – No Cause for Rejection
Summary: Building codes and design standards that reference ASTM International (ASTM) A1003 standard for cold-formed steel framing products have the potential to cause confusion and project delays for those who are unfamiliar with the requirements of this new material standard. This Technical Note, first published in 2008, provides a comparison of the requirements of A1003 with the more familiar standards traditionally used for cold-formed steel framing products, and demonstrates that steel ordered or furnished to the old standards should be no cause for rejection. The 2013 revision references a change to the requirements of ASTM A1003 regarding material thickness when ordering or supplying steel sheet.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note B007-20: General Considerations for Cold-Formed-Steel Connections
Summary: Cold-formed steel (CFS) connections present unique design challenges to consider due to the thickness of the steel. Connections with thin steel materials behave differently than connections with thicker hot-rolled steel materials and are prone to unique limit states. This Technical Note is an introduction to typical CFS connection design issues as defined by common limit states.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.