Tech Note G100-23: Using Chapter F of the North American Specification for the Design of CFS Structural Members
$5.00
This Tech Note Updates and Replaces Tech Note G100-07
Summary: The North American Specification for the Design of Cold-Formed Steel Structural Members is intended for use throughout the U.S., Canada and Mexico and was developed by the American Iron and Steel Institute, Canadian Standards Association, and CANACERO in Mexico. The Specification provides procedures for the design of load bearing cold-formed steel members in buildings and certain other applications.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Related Products
Tech Note F101-12: Screws for Cold-Formed Steel-To-Wood and Wood-To-Cold-Formed Steel Attachments
Summary: Screws are often used to attach cold-formed steel (CFS) framing to wood members or wood structural panel decking to CFS joists or rafters. The AISI North American Specification for the Design of Cold-Formed Steel Structural Members (AISI S100) provides design equations for screw connection capacity for CFS members. The National Design Specification for Wood Construction (NDS) provides design equations for fastener/connection capacity (nails, wood screws, bolts, etc.) in wood members. The Engineered Wood Association (APA) and the building codes offer several resources for determining the capacity of screw connections attaching wood sheathing. This Tech Note reviews these resources and discusses design and detailing of these fastener connections.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note B005-20: Introduction to Cold-Formed Steel Framing Design Aids
Summary: Both steel industry and manufacturers’ associations provide design aids that assist engineers with the proper application of the cold-formed steel design challenges. Design examples and design aids are essential to educate an engineer in the proper use and design of cold-formed steel members, connections and assemblies. This Tech Note provides an overview of some of the available cold-formed steel framing design aids.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note G103-11a: Tabulated Local And Distortional Elastic Buckling Solutions For Standard Shapes
Summary: This note provides elastic buckling moments and forces for local and distortional buckling of typical standard sections such as those in the AISI S201 Standard for Cold-Formed Steel Framing—Product Data and the Steel Stud Manufacturers Association (SSMA) Product Technical Information Catalog. These tabulated values allow designers to quickly examine and evaluate the use of the direct strength method (DSM) for design. Note that basic information on DSM is discussed in CFSEI Technical Note G102.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note G000-08: Cold-Formed Steel Design Software
Summary: This Tech Note gives basic information about computer programs available for the design of cold-formed steel framed buildings, structures, and structural elements. It is not necessarily a comprehensive list, but is based on the best available information to the CFSEI at the time of publication. It is not intended to endorse or exclude any particular software program.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note 562-22: Powder-Actuated Fasteners in Cold-Formed Steel Construction
This Technical Note updates and replaces Tech Note 562
Summary: Power-actuated fasteners (PAF’s) are industry standard for attachment of cold-formed steel (CFS) steel framing members, usually track, to concrete, CMU or steel structural elements. “Power-actuated” is the broad category used to refer to fasteners which are driven directly through the CFS and into the substrate, using a powder, gas, compressed air or electro-mechanically driven tool. Efficient installation of framing systems is greatly enhanced by the use of PAF’s. For CFS-to-steel applications, the specification AISI S100 addresses all relevant limit states with equations and safety/ resistance factors. For CFS-to-concrete, limited guidance is provided but not all limit states are covered. This technical note will provide design guidance based on AISI S100, as well as installation and good detailing practice.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note B010-21: Introduction to AISI S202, Code of Standard Practice for Cold-Formed Steel Structural Framing
Summary: Understanding the responsibilities of the different parties involved in a cold-formed steel framing project can be confusing. This Technical Note is an introduction to AISI S202, Code of Standard Practice for Cold-Formed Steel Structural Framing published by the American Iron and Steel Institute (AISI).
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note B008-20: Basic C-Shaped Wall Stud Behavior
Summary: Although cold-formed steel framing shares some limit states with hot-rolled steel, cold-formed steel framing and specifically C-Shaped studs exhibit unique behaviors when subjected to various loading conditions. This Tech Note gives an overview of those unique behaviors that need to be considered when designing C-Shaped cold-formed steel members.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note 559: Design Considerations for Flexural and Lateral-Torsional Bracing
Summary: Load bearing cold-formed/light gauge steel (CFS/LGS) framed walls are typically designed for a combination of axial and lateral out-of-plane (flexural) loading. Under this loading condition, common C-section studs may be susceptible to local, torsional, flexural, torsional-flexural, lateral-torsional or distortional buckling. The response performance of the stud depends on a number of parameters most notably how it is supported along its length (including its ends), the relative magnitudes of the applied loads and the distribution of these loads. This Technical Note discusses the behavior of the typical wall stud and provides some practical considerations for design of torsional-flexural and lateral-torsional bracing. Recommendations and considerations suggested in this technical note are done in accordance with acceptable practices and existing design documents.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.