Tech Note G800-23: ASTM Standards for Cold-Formed Steel
$5.00
This Tech Note Updates and Replaces Tech Note G800-12
Summary: This Technical Note provides an overview of the principal ASTM standards affecting cold-formed steel framing. These standards are often referenced in building codes and contractual documents, and are available for purchase on the ASTM website.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Related Products
Tech Note G102-09: Designing Cold-Formed Steel using the Direct Strength Method
Summary: The Direct Strength Method is an entirely new design method for cold-formed steel. The Direct Strength Method requires no effective width calculations, eliminates tedious iterations to determine section properties, properly includes interaction effects between elements of the cross-section such as the flange and the web, and opens up the potential to create new sections as it is applicable to nearly any shape that can be formed from cold-formed steel, as opposed to just C, Z and hat shapes. The Direct Strength Method was first adopted in 2004 as Appendix 1 to the North American Specification for the Design of Cold-Formed Steel Structural Members, and the most recent version can be found in the recently published AISI-S100-07. This CFSEI Technical Note introduces the Direct Strength Method and details some of the features of a recently published AISI Design Guide for this Method. The intent of this Tech Note and the Guide is to provide engineers with practical guidance in the application of this new design method.
Note: This document was originally published as G100-09, Corrected to G102-09 in April 2011
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note 559: Design Considerations for Flexural and Lateral-Torsional Bracing
Summary: Load bearing cold-formed/light gauge steel (CFS/LGS) framed walls are typically designed for a combination of axial and lateral out-of-plane (flexural) loading. Under this loading condition, common C-section studs may be susceptible to local, torsional, flexural, torsional-flexural, lateral-torsional or distortional buckling. The response performance of the stud depends on a number of parameters most notably how it is supported along its length (including its ends), the relative magnitudes of the applied loads and the distribution of these loads. This Technical Note discusses the behavior of the typical wall stud and provides some practical considerations for design of torsional-flexural and lateral-torsional bracing. Recommendations and considerations suggested in this technical note are done in accordance with acceptable practices and existing design documents.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note B009-20: Structural Versus Nonstructural Cold-Formed Steel Framing
Summary: This Tech Note defines structural and non-structural cold-formed steel framing. It lists code definitions that can be used to categorize framing in question.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note B005-20: Introduction to Cold-Formed Steel Framing Design Aids
Summary: Both steel industry and manufacturers’ associations provide design aids that assist engineers with the proper application of the cold-formed steel design challenges. Design examples and design aids are essential to educate an engineer in the proper use and design of cold-formed steel members, connections and assemblies. This Tech Note provides an overview of some of the available cold-formed steel framing design aids.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note G101-08: Design Aids and Examples for Distortional Buckling
Summary: The objective of this Tech Note is to provide design examples and design aids specific to cold-formed steel framing systems that address the new distortional buckling limit states added to AISI-S100 in the 2007 edition. In addition, a method is provided for including rotational restraint, provided by sheathing to members, in the design calculations for distortional buckling. This method has been proposed for the next edition of AISI-S210 (floors and roofs) and AISI-S211 (walls studs) standards and partially mitigates the reduced capacity in the distortional buckling limit state.
Note: This document was originally published as G100-08, corrected to G101-08 in April 2011.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note G000-08: Cold-Formed Steel Design Software
Summary: This Tech Note gives basic information about computer programs available for the design of cold-formed steel framed buildings, structures, and structural elements. It is not necessarily a comprehensive list, but is based on the best available information to the CFSEI at the time of publication. It is not intended to endorse or exclude any particular software program.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note B003-20: Introduction to Building Codes
Summary: The International Code Council develops a suite of building codes that are considered nationally to be the model codes for the building industry. Local jurisdictions adopt, and in some cases amend, the codes and they become the law of the jurisdiction for building design and construction. The adopted building codes are intended to provide minimum requirements to provide a safe building environment. Among other requirements, the code dictates the maximum allowable size of a building based on its intended use, materials used in construction, fire resistance rating of structural elements, and the presence of automatic sprinkler systems. The International Building Code establishes all design loads to be applied to the building or structure. The building code also relies on references to other standards and specifications to ensure the provisions reflect the current industry practice. For cold-formed steel framing, the IBC references the American Iron and Steel Institute’s suite of framing standards as the accepted design methods and procedures.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Tech Note F501-11: Cold-Formed Steel Truss To Bearing Connections
Summary: This Technical Note is intended as general educational information and to highlight what the building designer should be aware of with regard to truss to bearing connections. Topics addressed include what loads due to wind truss to bearing connections may have to resist, who is ultimately responsible for truss to bearing connection design, general guidance on the design of truss to bearing connections, and an illustrative design example. Loads due to seismic forces are not addressed in this Technical Note.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.