Tech Note L202-12: Diaphragm Design with Pneumatically Driven Pins
$5.00
Summary: Wood based panels for shear walls and horizontal diaphragms have traditionally been attached to cold-formed steel framing using self-drilling, tapping screws. With the introduction of pneumatic nailing systems, wood based panels can now be fastened to steel in a manner similar to which panels have been nailed to wood framing in the past. Information on specifications, selection, and field inspection of pneumatic drive pins is contained in Technical Note F300-09. This Technical Note contains procedures for the design of floor and roof diaphragms over cold-formed steel framing using pneumatically driven pins.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Related Products

Tech Note B009-20: Structural Versus Nonstructural Cold-Formed Steel Framing
Summary: This Tech Note defines structural and non-structural cold-formed steel framing. It lists code definitions that can be used to categorize framing in question.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note F101-12: Screws for Cold-Formed Steel-To-Wood and Wood-To-Cold-Formed Steel Attachments
Summary: Screws are often used to attach cold-formed steel (CFS) framing to wood members or wood structural panel decking to CFS joists or rafters. The AISI North American Specification for the Design of Cold-Formed Steel Structural Members (AISI S100) provides design equations for screw connection capacity for CFS members. The National Design Specification for Wood Construction (NDS) provides design equations for fastener/connection capacity (nails, wood screws, bolts, etc.) in wood members. The Engineered Wood Association (APA) and the building codes offer several resources for determining the capacity of screw connections attaching wood sheathing. This Tech Note reviews these resources and discusses design and detailing of these fastener connections.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note G200-21: Chase the Loads: Load Path Considerations for Cold-Formed Steel Light-Frame Construction
Summary: Engineering students are admonished to “chase the loads” in their structural analysis and design courses. A “load path” is the direction in which each consecutive load will pass through framing members and the connected members of a framing assembly. The load path sequence begins at the point of load application, both vertical (gravity, wind uplift or seismic vertical) and lateral, on the structure and works all the way down to the footing or foundation system, ultimately transferring the load of the structure to the foundation. This Tech Note provides insight into the load path considerations for cold-formed steel framing.
This Technical Note updates and replaces CFSEI Technical Note G200-15
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note B005-20: Introduction to Cold-Formed Steel Framing Design Aids
Summary: Both steel industry and manufacturers’ associations provide design aids that assist engineers with the proper application of the cold-formed steel design challenges. Design examples and design aids are essential to educate an engineer in the proper use and design of cold-formed steel members, connections and assemblies. This Tech Note provides an overview of some of the available cold-formed steel framing design aids.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note F103-17: Design of By-Pass Slip Connectors in Cold-Formed Steel Construction
Summary: A curtain wall can be defined as a non-vertically loaded exterior wall (aside from self-weight) supported by the primary structural frame of the building. When it comes to cold-formed steel framing, this definition can encompass a great many possible assemblies and applications. This Tech Note discusses the various structural elements of a curtain wall system and introduces the subjects of Design Loads and Framing Analysis.
This Technical Note updates and replaces CFSEI Technical Note W103-11.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note F300-09: Pneumatically Driven Pins for Wood Based Panel Attachment
Summary: Wood based panels for shear wall and horizontal diaphragms have traditionally been attached to cold-formed steel framing using tapping screws. To increase the speed of installation and to reduce the amount of labor used making these attachments, several companies supply pneumatic nailing systems. These products allow wood-based panels to be fastened to steel in a manner similar to which panels are nailed to wood framing. This Technical Note provides information on specifications, selection and field inspection of pneumatic drive pins.
This Technical Note updates and replaces LGSEA Technical Note 561b.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note F100-09: Design of Clip Angle Bearing Stiffeners
Summary: Clip angles are commonly used in cold-formed steel constructions to attach floor joists to the rim track. Clip angles can also work as bearing stiffeners to reinforce the web crippling strength of the floor joists at the bearing locations. As the length of the clip angle may significantly influence the floor joist web crippling strength, it is critical to ensure the minimum length of the clip angle in design.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note G900-15: Design Methodology for Hole Reinforcement of Cold-Formed Steel Bending Members
Summary: The North American Specification for the Design of Cold-Formed Steel Structural Member (AISI S100) does not provide guidelines for the reinforcement of holes in cold-formed steel members. This Technical Note provides a methodology for engineering a reinforcement solution.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.