Tech Note S300-21: Coordinating Cold-Formed with Metal Buildings
$5.00
Summary: This Technical Note presents a discussion of both the design responsibilities and the need for coordination when integrating field-framed, i.e., stick-built, cold-formed steel (CFS) framing with a metal building system. Important potential coordination topics connection details and design concepts are highlighted.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Related Products

Tech Note B008-20: Basic C-Shaped Wall Stud Behavior
Summary: Although cold-formed steel framing shares some limit states with hot-rolled steel, cold-formed steel framing and specifically C-Shaped studs exhibit unique behaviors when subjected to various loading conditions. This Tech Note gives an overview of those unique behaviors that need to be considered when designing C-Shaped cold-formed steel members.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note G103-11a: Tabulated Local And Distortional Elastic Buckling Solutions For Standard Shapes
Summary: This note provides elastic buckling moments and forces for local and distortional buckling of typical standard sections such as those in the AISI S201 Standard for Cold-Formed Steel Framing—Product Data and the Steel Stud Manufacturers Association (SSMA) Product Technical Information Catalog. These tabulated values allow designers to quickly examine and evaluate the use of the direct strength method (DSM) for design. Note that basic information on DSM is discussed in CFSEI Technical Note G102.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note D200-12: Corrosion Protection for Cold-Formed Steel Framing in Coastal Areas
Summary: Cold-formed steel framing may be subject to corrosion when exposed to moisture and salt, both of which are prevalent in coastal areas. The 2003 edition of this technical note, based on guidelines published by the Federal Emergency Management Agency (FEMA 1986) for metal connectors used in wood-framed construction, described the cause of accelerated corrosion in buildings located near the ocean and some larger saltwater bays, as well as the variation in the corrosive environments within a typical building. The 2007 update incorporated the results of a corrosion study by Dr. Ian Robertson of the University of Hawaii Department of Civil Engineering, funded by the U.S. Department of Housing and Urban Development (SFA 2006). The influence of terrain and wind direction on corrosion rates was added to the original document. This 2012 update includes revised referenced documents and improved guidance on the proper storage of materials. This technical note outlines available corrosion-resistant materials for cold-formed steel framing members
and makes recommendations for buildings at various distances from the ocean and for different exposure conditions within an individual building.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note F502-18: Attachment of CFS Framing to Precast, Post-Tensioned, and Hollow-Core Concrete
Summary: Precast, prestressed, tilt-up, cast-in-place, and post-tensioned concrete are commonly used in podium construction. It is inevitable that the cold-formed steel design engineer will sooner or later be challenged with attaching cold-formed steel framing to podium construction. Towards this end, it is important for the designer to have a basic understanding of common precast concrete components and why connecting to them can be such a challenge. This Tech Note discusses the types of precast concrete components as well as the cold-formed steel anchorage options.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note F602-20: Screw Connections with Other Materials or Gaps Between the Plies
Summary: Screws are the most common connection type for connecting cold-formed steel members to one another. It is also common for gaps to be provided between members in the form of other materials such as gypsum or insulation, but unfortunately, the current standards do not provide clear direction for the design of screwed connections with gaps in the material. This Tech Note will summarize available test data and propose design guidance based on the available test data.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note G500-11: Guidelines for Inspecting Cold-Formed Steel Structural Framing in Low Rise Buildings
Summary: The purpose of this document is to provide guidance for inspecting cold-formed steel structural framing in buildings not greater than 3 stories in height.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note B001-20: How Cold-Formed Steel Framing is Produced
Summary: Cold-formed steel seems like a fairly simple product when you are holding it in your hand, but as you can see, there are many production steps involving things like mining iron ore out of the ground, creating molten steel, furnaces above 2,000°F, reduction mills imparting forces in excess of 100,000 pounds per square inch, and hydrochloric acid cleaning baths before it even reaches the roll forming stage. This Tech Note has provided a basic outline of the processes involved in producing the products you work with daily, be it manufacturing, drafting, designing, engineering, installing or demolishing a building at the end of its life cycle.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note B004-20: Introduction to Cold-Formed Steel Framing Standards
Summary: The AISI Committee on Framing Standards was established in 1998 with a mission to eliminate regulatory barriers and increase the reliability and cost competitiveness of cold-formed steel framing in residential and light commercial building construction through improved design and installation standards. This Tech Note summarizes the efforts and work products of the Committee.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.