Webinar on Cold-Formed Steel Floor System

$100.00

Continuing Education Credits Available – 1.5 PDH Credits

This webinar will focus on the ideation, development, analysis and experimental evaluation of an innovative lightweight modular floor system utilizing cold-formed steel. As part of a research project funded by the American Institute of Steel Construction (AISC), researchers at the University of Kansas developed a novel floor system composed primarily of cold-formed steel, intended for modular use in steel-framed buildings. The webinar will highlight the background and initial development of the floor system, including design and construction considerations and corresponding analyses. As rapid fabrication, vibration mitigation and diaphragm behavior were emphasized in the development of the floor system, experimental testing of the floor focused on the cyclic behavior of connectors in the cold-formed steel components, vibration serviceability of the floor, and cyclic diaphragm performance within a steel-framed structure. All aspects of system validation will be presented, including physical and analytical evaluations as well as recommendations for future implementation and other project.

Presenter: Matthew F. Fadden, Ph.D., P.E.Matthew F. Fadden, Ph.D., P.E., Wiss, Janney, Elstner Associates (WJE)

Dr. Fadden joined WJE with 10 years of experience in structural engineering research and consulting. His primary areas of expertise include the design, analysis and evaluation of steel structures (hot-rolled and cold-formed) and reinforced concrete structures. Additionally, Dr. Fadden has expertise in structural evaluation using finite element modeling and structural testing. His experience also includes seismic design, structural vibrations, offshore structures and litigation support.

Prior to joining WJE, Dr. Fadden was a professor in the Department of Civil, Environmental, and Architectural Engineering at the University of Kansas. There, his research areas included modular systems and connections for steel buildings, bolted and welded connections, ancillary sign structures, structural vibrations, and additive manufacturing for civil infrastructure. Dr. Fadden has authored many technical publications in referenced journals and provided numerous conference presentations.

Dr. Fadden is a member of the American Institute of Steel Construction (AISC), the American Society of Civil Engineers (ASCE), and the Cold-Formed Steel Engineers Institute (CFSEI). He is a registered Professional Engineer in Alabama, Florida, Kansas and Louisiana He earned a B.S. degree in Civil Engineering from the University of Illinois at Urbana-Champaign and M.S. and Ph.D. degrees in Civil Engineering from the University of Michigan.

Presenter: William N. Collins, Ph.D., P.E.William N. Collins, Ph.D., P.E., University of Kansas

Dr. Collins is the Chair’s Council Associate Professor of Civil, Environmental and Architectural Engineering at the University of Kansas.

Dr. Collins’ expertise is in structural engineering, with a particular focus on fracture and fatigue behavior and metallic infrastructure. He has been associated with numerous projects related to structural behavior, fabrication and inspection. He is active with numerous professional organizations, including TRB, ASTM International and the AASHTO/NSBA Collaboration. Dr. Collins is also engaged in a variety of educational initiatives at the University of Kansas, including the development and implementation of peer mentoring in structural engineering curricula, an effort that has spread to other groups and departments within the university. He was awarded the AISC Milek Fellowship in 2021.

Previously, he was a research engineer at Purdue University and a research/teaching assistant at Virginia Polytechnic Institute and State University (Virginia Tech). He was also a timberwright at Blue Ridge Timberwrights in Christiansburg, Virginia and a construction superintendent at Prospect Homes of Richmond.

Dr. Collins is a registered Professional Engineer in Kansas. He holds B.S., M.S., and Ph.D. degrees in Civil Engineering, Structural Engineering and Materials from Virginia Tech.

In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically.

Category: