Webinar on Cold-Formed Steel Framing Design with Data-Driven Models
$100.00
Continuing Education Credits Available – 1.5 PDH Credits
A historical challenge for the cold-formed steel industry has been the generation of many disparate physical test data sets without much dedicated effort on collecting and curating that data. A non-profit data-driven Initiative was recently launched to address this knowledge gap, and the Initiative’s mission is to make high quality physical test data accessible to anyone. This webinar will discuss a plan for using emerging data-driven tools to design cold-formed steel framing. The webinar will present a convincing case for how data-driven models can reduce the hoops an engineer has to jump through to design cold-formed steel framing. Cris will use examples to highlight the first open databases and supporting data tools from the Initiative that are now becoming available.

Cristopher D. Moen, Ph.D., P.E., F.SEI
RunToSolve LLC
Cris Moen is CEO and President of RunToSolve LLC, a software R&D company founded in 2019 that specializing in structural system analysis and design automation.
Cris started his career as a bridge engineer at J. Muller International (1997-2002) and Parsons Corporation (2002-2004). He completed his Ph.D. at Johns Hopkins University (2004-2008) focusing on thin-walled structures and cold-formed steel, working up to Associate Professor at Virginia Tech (2008-2016), and since 2017 has served as a part-time faculty member at Johns Hopkins University. From 2013 to 2018 Cris was CEO of NBM Technologies, Inc., an academically-rooted engineering consulting company that completed over 100 projects across building construction, solar, and aerospace industry sectors.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically
Related Products

Webinar on Cold-Formed Steel Curtain Wall Design
Continuing Education Credits Available – 1.5 PDH Credits
Curtain walls with various types of cladding are commonly used for many modern structures and are often framed with cold-formed steel. Curtain walls are typically attached to the main building frame and therefore must be designed to accommodate deflections of the structural frame and also designed to transfer wind and seismic forces to the structure. This webinar will cover many of the topics a designer will need for a complete cold-formed steel curtain wall design. The information presented will be based upon AISI S100, North American Specification for the Design of Cold-Formed Steel Structural Members, AISI S211, North American Standard for Cold-Formed Steel Framing – Wall Stud Design and various CFSEI Technical Notes. Some specific topics covered will include stud design, top track design, design of openings, bridging and various additional miscellaneous topics. Example calculations will also be provided covering studs, top track, connections and openings.
Presenter: Sutton Stephens, P.E., S.E., Ph.D.

Sutton Stephens, P.E., S.E., Ph.D. has experience in the structural engineering field and in education. He has worked for consulting engineering firms in Washington and Montana and taught structural engineering courses at Kansas State University in the Architectural Engineering Department. In addition to the design of cold-formed steel structures, he has authored or co-authored a number of research papers covering various topics in cold-formed steel. He has served in the AISI Committee on Framing Standards (COFS) and chaired the Prescriptive Methods sub-committee. He also served on the CFSEI Executive Committee for two terms.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically

Webinar on Current Topics in Cold-Formed Steel Framing
Continuing Education Credits Available – 1.5 PDH Credits
While there are a variety of popular topics in cold-formed steel (CFS) engineering, in this CFSEI webinar Zane Clark, P.E., S.E., and Josh Garton, P.E., S.E., of McClure will focus on two important areas.
First, Clark and Garton will discuss powder actuated fasteners in seismic applications. Since CFS connection systems need to resist seismic forces in seismic zones, the presenters will discuss current challenges and limitations of using PAFs and alternative options.
Second, Clark and Garton will discuss the use of non-bearing walls as shear walls. While other framing materials can be used to construct shear walls, non-bearing CFS-framed assemblies provide some shear strength to resist lateral loads. The presenters will discuss the limitations and special detailing requirements of such CFS systems.
The presenters will also allow time to discuss other CFS considerations currently popular within the engineer community.

Zane Clark, P.E., S.E., McClure
Zane Clark, P.E., S.E., is the Structural Technical Lead for McClure, where he has been designing cold-formed steel (CFS) structures since 2015. Through his time at McClure, Clark has gained specialized expertise in the design of mid-rise, load-bearing CFS buildings. Clark’s current role involves providing quality control and code compliance reviews of design documents produced by McClure’s structural team as well as promoting technical education and training for the engineering staff. He is active with the ASCE/SEI Committee on Cold-Formed Steel Members, which is producing a design guide for CFS structures. His contribution is on the design of CFS lateral force-resisting systems.

Josh Garton, P.E., S.E., McClure
Josh Garton, P.E., S.E., is Project Manager and Team Leader for McClure’s Enclosures and Interiors structural services team. McClure has 14 offices in 5 states, practicing in 49 states. Garton has over 9 years of experience designing cold-formed steel systems throughout the country. He has a background specifically in non-bearing exterior framing, interior framing and ceiling systems, complex curved structural cold-formed steel, panelized and modular construction, high seismic applications, and cladding design.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically
Price: $100

Webinar on Demystifying Cold-Formed Steel Torsion Analysis for Design
Continuing Education Credits Available – 1.5 PDH Credits
Cold-formed steel structural members are commonly subjected to torsion. The torsional behavior of open cross-sections can be complex, involving both warping torsion and St. Venant torsion. Most structural engineering curriculums do not teach this combined torsion response, leaving many engineers with limited ability to properly design for torsion. To complicate matters, most structural analysis software does not fully capture the torsional behavior for cold-formed steel members.
This webinar will review some torsion fundamentals and explain torsion distribution using analogies to flexural behavior familiar to structural engineers. The similarity to flexure will be demonstrated using the CFS® software. The AISI design provisions for combined bending and torsion will be reviewed, and the application of these provisions will be evaluated with several design examples.
Presenter: Bob Glauz, P.E., MSCE

Bob Glauz is the author of the CFS® software used internationally for cold-formed steel design. He is a member of the American Iron and Steel Institute (AISI) Committee on Specifications and chairs the AISI Committee on Member Design. He is also a member of the ASCE/SEI Standards Committee on Stainless Steel Cold-Formed Sections, the Structural Stability Research Council (SSRC) and the SSRC Task Group on Stability of Steel Members. Bob has authored several technical articles on lateral-torsional, flexural-torsional, and distortional buckling of cold-formed steel members.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically

Webinar on Coordinating Cold-Formed Steel Framing with Metal Buildings
Continuing Education Credits Available – 1.5 PDH Credits
This webinar will address the following topics:
- Provide a brief introduction to metal buildings and their growing use in more diverse markets,
- Identify design and detailing issues when using cold-formed steel framing in metal buildings,
- Use actual project examples to demonstrate detailing and design concerns and solutions,and
- Provide answers to questions from participants.

Jeffrey Klaiman, P.E., ADTEK Engineers, Inc.
Jeff has over 20 years of experience in the construction industry. His responsibilities include building maintenance and engineering; on-site engineering for a concrete contractor; Manager of Technical Services and Versa-Truss Product Manager for Dale/Incor (national manufacturer of cold-formed steel framing products and systems), participation on the American Iron and Steel Institute’s Committee on Specifications for the Design of CFS Structural Members and Committee on Framing Standards; a member of CFSEI for more than 10 years; ASTM International and the SFA. Mr. Klaiman serves as chairman of the Standard Practices Subcommittee of the AISI Committee on Framing Standards and is also the president of MASFA. He is a past president of CFSEI. In his position at ADTEK Engineers, Inc. as Principal in Charge of Specialty Engineering, Mr. Klaiman oversees the design and coordination of all cold-formed steel design documents. He also manages in-house staff in three offices for CFS framing design, develops project schedules, and coordinates quality control reviews with project managers on his team. Mr. Klaiman holds a bachelor’s degree in Civil Engineering from the University of Michigan, and an MBA from Eastern Michigan University.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically

Webinar on Cold-Formed Steel Attachment to Concrete in Seismic Zones
Continuing Education Credits Available – 1.5 PDH Credits
For decades, Power- Actuated Fasteners (PAFs) have been used in the construction industry as a safe, reliable, and productive method to fasten various building components-such as cold-formed steel (CFS) framing-to steel and concrete. Code provisions for the use of PAFs in seismic areas for attachments of cold-formed metal framing to concrete have been subject to various interpretations. This presentation will provide recommendations based on Hilti’s understanding of the code provisions.
AISI S100-16, North American Specification for the Design of Cold-Formed Steel Structural Members, 2016 Edition (including the latest supplements), provides some basic provisions regarding calculation of the shear and tension resistance of a connection between CFS and concrete, but does not provide specific equations or values. In addition, Chapter 13 of ASCE/SEI 7-16, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, includes some restrictions regarding the use of PAFs in Seismic Design Categories (SDC) D, E, and F. Chapter 13 is entitled “Seismic Design Requirements for Nonstructural Components,” so the focus is on nonstructural applications like partition walls.
This presentation is designed to clarify the intent of the language in the code-referenced publications AISI S100 and ASCE/SEI 7-16 as it relates to PAFs used to attach track to concrete, in SDC A-C and SDC E-F. The presentation will also provide practical guidance to the designer regarding which design values should be used and where those values can be obtained. Additional practical recommendations will be provided regarding the specification of various types of PAFs and their embedment depths into the concrete.
Christopher Gill, Hilti Inc.

Chris Gill is the Technical Services Manager for Direct Fastening at Hilti in Plano, Texas. He is responsible for the department which performs product testing, generates technical data, publishes technical documents, and obtains approvals and listings for power-actuated and screw-fastening products. He is a member of the American Iron and Steel Institute (AISI) Committee on Specifications, and a voting member of its subcommittees responsible for connections and joints, and diaphragm design. Chris recently participated in the 2020 NEHRP Provisions Update Committee, Issue Team 9, which addressed alternate provisions for seismic diaphragm design, and recommended new provisions for incorporation into ASCE/SEI 7. He has also contributed to the soon-to-be published ASCE/ SEI Design Guide “Cold-Formed Steel Connections to Other Materials.”
Chris has a total of 33 years working in the fastening and anchoring industry. He previously worked as a field engineer, field engineering manager, trade manager and product manager with Hilti. He holds a B.S. degree in Engineering from Brown University and an M.S. degree in Engineering and Technology Management from Oklahoma State University.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically

Webinar on Cold-Formed Steel Connection Applications
Continuing Education Credits Available – 1.5 PDH Credits
This webinar will explore common cold-formed steel connection applications with an emphasis on clip angles. Until AISI D114, Cold-Formed Steel Clip Angle Design Guide was issued in 2021, there was no recognized design approach for clip angles. Based on research at the University of North Texas, a better understanding of the behavior and therefore the design requirements are now available.
Connection design information provided by AISI D110, Cold-Formed Steel Framing Design Guide, AISI D112, Brick Veneer Cold-Formed Steel Framing Design Guide and CFSEI Tech Notes will also be discussed.
Presenter: Roger LaBoube, Ph.D., P.E., Cold-Formed Steel Engineers Institute
Dr. Roger A. LaBoube is Curator’s Distinguished Teaching Professor Emeritus of Civil, Architectural and Environmental Engineering and former director of the Wei-Wen Yu Center for Cold-Formed Steel Structures at the Missouri University of Science & Technology. Dr. LaBoube holds B.S., M.S., and Ph.D. degrees in Civil Engineering from the University of Missouri-Rolla. He has an extensive background in the design and behavior of cold-formed steel structures. His research and design activities have touched on many facets of cold-formed steel construction, including cold-formed steel beams, panels, trusses, headers, and wall studs as well as bolt, weld, and screw connections. Dr. LaBoube is active in several professional organizations and societies. He served as chairman of the American Iron and Steel Institute (AISI) Committee on Framing Standards and is an emeritus member of the AISI Committee on Specifications for the Design of Cold-Formed Steel Structural Members. He is a registered professional engineer in Missouri.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically
Price: $100

Back-to-Basics: Structural vs Nonstructural Members Webinar
Continuing Education Credits Available – 1.5 PDH Credits
The North American Standard for Cold-Formed Steel Framing – Nonstructural Members, AISI S220, has been adopted into IBC 2015. AISI S220 was created to help delineate and eliminate the confusion between the engineering principles and requirements for cold-formed steel structural members and nonstructural members. The webinar will address the basic behavior of composite vs non-composite wall assemblies, as well as design requirements that differ between the structural and nonstructural member.
Presenter: Roger LaBoube, Ph.D., P.E.
Wei-Wen Yu Center for Cold-Formed Steel Structures
Roger LaBoube, Ph.D., P.E. is Curator’s Distinguished Teaching Professor Emeritus of Civil, Architectural and Environmental Engineering and Director of the Wei-Wen Yu Center for Cold-Formed Steel Structures at the Missouri University of Science & Technology (formerly University of Missouri-Rolla). Dr. LaBoube holds B.S., M.S., and Ph.D. degrees in Civil Engineering from the University of Missouri-Rolla. Dr. LaBoube has an extensive background in the design and behavior of cold-formed steel structures. His research and design activities have touched on many facets of cold-formed steel construction including cold-formed steel beams, panels, trusses, headers, and wall studs as well as bolt, weld, and screw connections. He is active in several professional organizations and societies, including membership on the American Iron and Steel Institute’s Committee on Specifications for the Design of Cold-Formed Steel Structural Members and chairman of the AISI Committee on Framing Standards. He is a registered Professional Engineer in Missouri.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically

Webinar on Design Considerations for Cold-Formed Steel Light Frame Diaphragms
Continuing Education Credits Available – 1.5 PDH Credits
This webinar will cover the basic design of cold-formed steel light frame diaphragms as envisioned in the provisions articulated in AISI S100-16, North American Specification for the Design of Cold-Formed Steel Structural Members, 2016 Edition; AISI S230-19, North American Standard for Cold-Formed Steel Framing―Prescriptive Method for One- and Two-Family Dwellings, 2019 Edition; AISI S400-15 w/S1-16, North American Standard for Seismic Design of Cold-Formed Steel Structural Systems, 2015 Edition with Supplement 1; and AISI S240-15, North American Standard for Cold-Formed Steel Structural Framing, 2015 Edition. Design practice documents derived from these AISI Standards will also be addressed. At the conclusion of this webinar, design professionals will have a better understanding of current provisions that support engineered design (strength and deflection) of conventional codebased light frame cold-formed steel diaphragms as well as the limitations of these provisions.

Presenter: Reynald Serrette, Ph.D.,
Santa Clara University
Reynaud Serrette, Ph.D. is a professor in the Department of Civil, Environmental and Sustainable Engineering at Santa Clara University in Santa Clara, California. He has been involved in cold-formed steel research and design since 1987.
In order to receive credit for this course, you must complete the quiz at the end and pass with at least 80% for a certificate to be generated automatically