Tech Note D001- 23: Durability of Cold-Formed Steel Framing Members
$5.00
This Tech Note Updates and Replaces Tech Note D001-13
Summary: The purpose of this document is to give engineers, architects, builders and home and commercial building owners a better understanding of how galvanizing (zinc and zinc alloy coatings) provides long-term corrosion protection to cold-formed steel framing members. This document also suggests guidelines for selecting, handling, and using these steels in framing applications.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Related Products

Tech Note T201-20: Firestops in Head-of-Wall Joints for Cold-Formed Steel Construction
Summary: The selection of fire-resistive joint systems is aided by an abundance of listed options. This same abundance can make it difficult to find the fire-resistive joint system that not only meets project requirements but also the most project-friendly. Firestop manufacturers conduct training programs for installing contractors, architects, building officials, and others who would like to learn more about fire-resistive systems. Specialty firestop contractors can help with understanding project-specific opportunities. Both UL and FM offer certification programs for firestop contractors to help ensure consistency across the industry. Moreover, it is important to note whether a project will require special inspection of firestops systems. For example, 2018 IBC, Section 1705.17, lists requirements for special inspection of firestops in certain high-rise buildings. There are companies that focus on offering special inspection services. For recommendations or further learnings, please contact your firestop provider. The firestop industry is focused on improving life safety in the built environment through improved passive fire protection.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note G900-23: Design Methodology for Hole Reinforcement of Cold-Formed Steel Bending Members
This Tech Note Updates and Replaces Tech Note G900-15
Summary: The AISI S100, North American Specification for the Design of Cold-Formed Steel Structural Members does not provide guidelines for the reinforcement of holes in cold-formed steel members. This Technical Note provides a methodology for engineering a reinforcement solution.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note L101-23: Design of Cold-Formed Steel Sheet and Wood Structural Panel Sheathed Shear Walls for Wind and Seismic Forces
Summary: This Technical Note provides an overview of low seismic and wind-controlled steel sheet and wood structural panel sheathed cold-formed steel (CFS) framed shear wall designs. It is a digest of the AISI D113-19, Cold-Formed Steel Shear Wall Design Guide and presents a more basic overview of design considerations. Sample shear wall capacity and loading comparisons are provided. For detailed design examples, refer to the AISI D113-19.
Code references are limited to AISI S240-15, North American Standard for Cold-Formed Steel Structural Framing; more detailed references, including AISI S400-15, North American Standard for Seismic Design of Cold-Formed Steel Structural Systems for high seismic design requirements can be found in the AISI D113-19.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note G801-13: ASTM A1003 – No Cause for Rejection
Summary: Building codes and design standards that reference ASTM International (ASTM) A1003 standard for cold-formed steel framing products have the potential to cause confusion and project delays for those who are unfamiliar with the requirements of this new material standard. This Technical Note, first published in 2008, provides a comparison of the requirements of A1003 with the more familiar standards traditionally used for cold-formed steel framing products, and demonstrates that steel ordered or furnished to the old standards should be no cause for rejection. The 2013 revision references a change to the requirements of ASTM A1003 regarding material thickness when ordering or supplying steel sheet.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note F101-12: Screws for Cold-Formed Steel-To-Wood and Wood-To-Cold-Formed Steel Attachments
Summary: Screws are often used to attach cold-formed steel (CFS) framing to wood members or wood structural panel decking to CFS joists or rafters. The AISI North American Specification for the Design of Cold-Formed Steel Structural Members (AISI S100) provides design equations for screw connection capacity for CFS members. The National Design Specification for Wood Construction (NDS) provides design equations for fastener/connection capacity (nails, wood screws, bolts, etc.) in wood members. The Engineered Wood Association (APA) and the building codes offer several resources for determining the capacity of screw connections attaching wood sheathing. This Tech Note reviews these resources and discusses design and detailing of these fastener connections.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note L200-09: Roof Framing Anchorage Forces: MWFRS or C&C
Summary: This Technical Note defines the two levels of force and discusses the effects of using Component and Cladding (C&C) loads versus Main Wind Force Resisting System (MWFRS) calculated uplift loads. Design examples are provided to indicate the difference in roof-to-wall anchorage force for either type of load. Mainstream reference standards and quotes from field experts are cited when discussing the appropriate levels for calculating the uplift forces.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note 558b-1: Lateral Load Resisting Elements: Diaphragm Design Values
Archived with cover page Nov. 2011
Summary: This note was archived November, 2011. The author has developed ASD design tables using an analytical method for wood framing based on the provisions of the 1991 edition of the AFPA National Design Specification for Wood Construction. Additional research is needed to bring the data in line with current codes and standards. The data below is from commentary section D2.1 of American Iron and Steel Institute AISI 213, Standard for Cold-Formed Steel Framing – Lateral Design.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note W600-21: Cold-Formed Steel Load-Bearing Wall Design
Summary: This Technical Note has been written to help cold-formed steel (CFS) engineers further their understanding of structural load-bearing CFS walls. Given the myriad of details required for such structures, the importance of proper design and analysis of load-bearing CFS members cannot be understated. This Technical Note will discuss the various design considerations that must be taken into consideration during the design phase of such structures.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
