Tech Note F140-25: Welding Cold-Formed Steel
$5.00
This Technical Note updates and replaces CFSEI Technical Note F140-16
Summary: In cold-formed steel construction, welding is a viable connection method. Of the various forms of welding, arc welding is most commonly used to join both cold-formed steel members and hardware components. Prefabrication of roof trusses, panelization of walls, and hardware connections are all ideal applications where welding may be the preferred joining method. This Tech Note provides information on the applicable codes, processes, procedures, design considerations, fabrication and inspection.
This Technical Note updates and replaces CFSEI Technical Note F140-10
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Related Products

Tech Note W600-21: Cold-Formed Steel Load-Bearing Wall Design
Summary: This Technical Note has been written to help cold-formed steel (CFS) engineers further their understanding of structural load-bearing CFS walls. Given the myriad of details required for such structures, the importance of proper design and analysis of load-bearing CFS members cannot be understated. This Technical Note will discuss the various design considerations that must be taken into consideration during the design phase of such structures.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note 558b-1: Lateral Load Resisting Elements: Diaphragm Design Values
Archived with cover page Nov. 2011
Summary: This note was archived November, 2011. The author has developed ASD design tables using an analytical method for wood framing based on the provisions of the 1991 edition of the AFPA National Design Specification for Wood Construction. Additional research is needed to bring the data in line with current codes and standards. The data below is from commentary section D2.1 of American Iron and Steel Institute AISI 213, Standard for Cold-Formed Steel Framing – Lateral Design.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note FC101-22: Design of Cold-Formed Steel Rim Track
Summary: Cold-formed steel floor, roof, soffit, and ceiling joists are widely used in commercial applications. End of the joist rim track is an important component of many floor/roof/ceiling/soffit systems used to transfer load from the joist to another component of the structure. This Technical Note provides an overview of different rim track applications and how each is designed.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note W200-23: Header Design
This Tech Note Updates and Replaces Tech Note W200-09
Summary: AISI S240, North American Standard for Cold-Formed Steel Structural Framing provides provisions needed to design headers over door and window openings in buildings. AISI S240 Section B3.3 – Header Design reflects the appropriate design procedures for back-to-back headers, box headers, and Single, Double and Inverted L-headers subject to gravity loads or wind uplift loads. This Technical Note provides additional recommendations and design examples intended to supplement the AISI S240 header provisions.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note L001-10: Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006 IBC
Summary: This Technical Note is intended to discuss some of the design requirements, detailing and practical limitations of diagonal strap bracing design. Diagonal flat strap bracing is a commonly used type of lateral force resisting system in residential and low rise commercial cold-formed steel applications.
This Technical Note is an editorial revision of Technical Note L001-09.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note F101-12: Screws for Cold-Formed Steel-To-Wood and Wood-To-Cold-Formed Steel Attachments
Summary: Screws are often used to attach cold-formed steel (CFS) framing to wood members or wood structural panel decking to CFS joists or rafters. The AISI North American Specification for the Design of Cold-Formed Steel Structural Members (AISI S100) provides design equations for screw connection capacity for CFS members. The National Design Specification for Wood Construction (NDS) provides design equations for fastener/connection capacity (nails, wood screws, bolts, etc.) in wood members. The Engineered Wood Association (APA) and the building codes offer several resources for determining the capacity of screw connections attaching wood sheathing. This Tech Note reviews these resources and discusses design and detailing of these fastener connections.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note T201-20: Firestops in Head-of-Wall Joints for Cold-Formed Steel Construction
Summary: The selection of fire-resistive joint systems is aided by an abundance of listed options. This same abundance can make it difficult to find the fire-resistive joint system that not only meets project requirements but also the most project-friendly. Firestop manufacturers conduct training programs for installing contractors, architects, building officials, and others who would like to learn more about fire-resistive systems. Specialty firestop contractors can help with understanding project-specific opportunities. Both UL and FM offer certification programs for firestop contractors to help ensure consistency across the industry. Moreover, it is important to note whether a project will require special inspection of firestops systems. For example, 2018 IBC, Section 1705.17, lists requirements for special inspection of firestops in certain high-rise buildings. There are companies that focus on offering special inspection services. For recommendations or further learnings, please contact your firestop provider. The firestop industry is focused on improving life safety in the built environment through improved passive fire protection.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note F602-20: Screw Connections with Other Materials or Gaps Between the Plies
Summary: Screws are the most common connection type for connecting cold-formed steel members to one another. It is also common for gaps to be provided between members in the form of other materials such as gypsum or insulation, but unfortunately, the current standards do not provide clear direction for the design of screwed connections with gaps in the material. This Tech Note will summarize available test data and propose design guidance based on the available test data.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
