Tech Note L400-25: Non-Bearing Lateral Force Resisting Systems
$5.00
Summary: Cold-formed steel (CFS) lateral systems are commonly used in bearing wall systems buildings, but non-bearing CFS lateral force resisting systems are non-standard applications that fall outside of ASCE/SEI 7, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, design criteria, and pose significant challenges for design and construction. These walls can offer lateral load resistance but come with limitations that require intensive detailing. Specifiers and designers must understand these systems performance, limitations, and detailing options for proper force transfer. This Tech Note covers the limitations, alternative solutions to avoid the unnecessary use of non-bearing lateral force resisting systems, and critical detailing practices when they are used.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
Related Products

Tech Note W200-23: Header Design
This Tech Note Updates and Replaces Tech Note W200-09
Summary: AISI S240, North American Standard for Cold-Formed Steel Structural Framing provides provisions needed to design headers over door and window openings in buildings. AISI S240 Section B3.3 – Header Design reflects the appropriate design procedures for back-to-back headers, box headers, and Single, Double and Inverted L-headers subject to gravity loads or wind uplift loads. This Technical Note provides additional recommendations and design examples intended to supplement the AISI S240 header provisions.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note F602-20: Screw Connections with Other Materials or Gaps Between the Plies
Summary: Screws are the most common connection type for connecting cold-formed steel members to one another. It is also common for gaps to be provided between members in the form of other materials such as gypsum or insulation, but unfortunately, the current standards do not provide clear direction for the design of screwed connections with gaps in the material. This Tech Note will summarize available test data and propose design guidance based on the available test data.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note L002-23: Strap Braced Wall: Loose Strap Considerations
Summary: Strap braced walls are a common means of providing lateral stability for cold-formed steel load-bearing structures. Discussed in this technical note are causes of loose straps, potential stability implications as well as potential means of remediation.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note F100-23: Design of Clip Angle Bearing Stiffeners
Summary: Clip angles are commonly used in cold-formed steel constructions to attach floor joists to the rim track. Clip angles can also work as bearing stiffeners to reinforce the web crippling strength of the floor joists at the bearing locations. As the length of the clip angle may significantly influence the floor joist web crippling strength, it is critical to ensure the minimum length of the clip angle in design.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note T201-20: Firestops in Head-of-Wall Joints for Cold-Formed Steel Construction
Summary: The selection of fire-resistive joint systems is aided by an abundance of listed options. This same abundance can make it difficult to find the fire-resistive joint system that not only meets project requirements but also the most project-friendly. Firestop manufacturers conduct training programs for installing contractors, architects, building officials, and others who would like to learn more about fire-resistive systems. Specialty firestop contractors can help with understanding project-specific opportunities. Both UL and FM offer certification programs for firestop contractors to help ensure consistency across the industry. Moreover, it is important to note whether a project will require special inspection of firestops systems. For example, 2018 IBC, Section 1705.17, lists requirements for special inspection of firestops in certain high-rise buildings. There are companies that focus on offering special inspection services. For recommendations or further learnings, please contact your firestop provider. The firestop industry is focused on improving life safety in the built environment through improved passive fire protection.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note S300-21: Coordinating Cold-Formed with Metal Buildings
Summary: This Technical Note presents a discussion of both the design responsibilities and the need for coordination when integrating field-framed, i.e., stick-built, cold-formed steel (CFS) framing with a metal building system. Important potential coordination topics connection details and design concepts are highlighted.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note 551e: Design Guide: Permanent Bracing of Cold-Formed Steel Trusses
Summary: Prefabricated and site fabricated cold-formed steel trusses have proven to be efficient and structurally-sound roof structures. While roof trusses are the major component of the structural roof system, permanent bracing is also required to complete the system and ensure that it performs as designed. In this Tech Note, the basic requirements and design parameters for permanent bracing of cold-formed steel roof systems will be reviewed.
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.

Tech Note W102-21: Introduction to Curtain Wall Design using Cold-Formed Steel
Summary: A curtain wall can be defined as a non-vertically loaded exterior wall (aside for self-weight) support by the primary structural frame of the building. When it comes to cold-formed steel framing, this definition can encompass a great many possible assemblies and applications. This Technical Note discusses the various structural elements of a curtain wall system, and introduces the subjects of design loads and framing analysis.
This Technical Note updates and replaces CFSEI Tech Note W102-12
Disclaimer: Designs cited herein are not intended to preclude the use of other materials, assemblies, structures or designs when these other designs demonstrate equivalent performance for the intended use. CFSEI documents are not intended to exclude the use and implementation of any other design or construction technique.
